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Interface dynamics in a uniaxial anisotropic n-vector model
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We investigate interface dynamics of a nonconsenw@ctor model with a positive uniaxial anisotropy and
derive its evolution equation. The positive uniaxial anisotropy makes the symmetry of the order parameter
lower, and the medium forms an interface structure. In a weak anisotropic case the interface has an additive
order parameter havinqi(- 1) degrees of freedom with @¢ 1) symmetry. The evolution equation is incor-
porated with the fluctuation associated with additive-(1) degrees of freedom on the interface, and the
resultant form has the extended form of the one derived by Allen and Cahn for the scalar order parameter
system[S1063-651X98)08003-9

PACS numbg(s): 05.70.Ln, 64.60.Cn, 75.60.Ch, 75.30.Gw

[. INTRODUCTION served system$,7]. In both works we derived the evolution
equation for the domain wall, the so-called Bloch wall, hav-

The dynamics in which the interface plays an importanting chirality. In one dimension, we showed that the chirality
role has had much attention in the context of magnetic sysbrings about either a repulsive or attractive interaction be-
tems[ 1], binary mixtureg 2], reaction-diffusion systems, and tween neighboring walls in contrast to the Ising walls which
liguid crystal system$3]. Some familiar examples are what always bring an attractive interaction. In two dimensions, the
appear in ordering process in a ferromagnet or binary mixehirality does not affect the global features of the dynamics,
tures. In such systems the order parameter is a scalar fiekiich as the growth law for the average domain size, and only
variable and the free energy has two local minima, which arelightly affects the interface shape.
produced by temperature change. The fundamental purpose of the present paper is to show

The interface formed in a scalar order parameter systerthe derivation of the evolution equation of the interface in
has no particular structure except curvature describing itthe n-vector model with positive uniaxial anisotropy. This is
local geometry when the embedded space is isotropic ana straight extension of our previous work for the two-
homogeneous. Furthermore the dynamics minimizes its sudimensional anisotropi¥ Y-spin system. Results can be gen-
face energy which is driven by curvature in the orderingeralized to any space dimensions and number of components.
process in purely dissipative cases. In an extension of these This paper is organized as follows. In Sec. Il the model is
systems we consider a situation where the interface has gwesented. In Sec. lll we obtain the fundamental equations
additive vector order parameter with € 1) symmetry, in  controlling the interface dynamics for this system, and then
addition to curvature. One such system is realized in thaliscuss their features in Sec. IV. Finally we summarize our
n-vector model with the positive uniaxial anisotropy axis in results in Sec. V.
the order parameter space.

The n-vector model describes a medium whose order pa-
rameter has Q() symmetry. In this model the rotation in the
physical space and the rotation in the inner space of order Let us consider the Ginzburg-LandéBL) type free en-
parameter are independepd]. The model describes the ergy for the n-vector system with anisotropy in
XY-spin system fon=2 and a Heisenberg spin system for d-dimensional space,
n= 3, for example. The nonequilibrium dynamical study on
this model was developed by several authors in the frame of 1
the ordering proceds). H{zp}:f ddr{V(hM)— EE U Yapth®

The introduction of uniaxial anisotropy to thevector @b

Il. THE MODEL

model reduces the symmetry of the order parameter to 1

Q(n—l), O(h—-1)xZ,, andZ, symmetry, \_/vh|ch, respec- +§2 ajgz/“ajz//“}, (2.7

tively, correspond to the strong negative anisotrdpgsitive be

or negative weak anisotropy, and strong positive anisotropy.

The sign is defined in the next section. Due to the symmetrievhere ¢ is the n-component vector order parameter

property, if positive anisotropy is induced, the system pos= (41, 42,....4"), Yap 1S @ symmetric tensor which repre-

sesses interfaces which separates two stable states. Espents the anisotropy, and(x)=(1—x?)?/4. Since we con-

cially if the anisotropy is weak, the interface has additivesider uniaxial anisotropyy,s is chosen in such a way that

(n—1) degrees of freedom whose symmetry isnG@1). the first component of the order parameter is the principal

The interest is in how to describe the local dynamics whichaxis without loss of generality, i.ey11=7v, You=—7 (@

is responsible for evolutions of interfaces. #1), ¥Yap=0 (a# B). This is the simplest model for the
In previous works we studied both one- and two-n-vector model with uniaxial anisotropy considering only

dimensional anisotropiX Y-spin systemsr{=2) in noncon- isotropic elastic energy.
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For the time evolution we consider the nonconserved

. . . . 20 T T T T T T
purely dissipative dynamics
a oH 2\, a 2.« ””/
at¢ == 5¢/a:(1_|¢‘| )l// +7aa¢ +V lﬂ . (22) 15 - ,/”, .
Here we ignore thermal noise and concern ourselves with the ’,//’
system which is quenched from above the critical tempera- f ol /,,/ |

ture.

Let us first investigate the uniform solution of E@.2).
For positivey (0<y<1), there exist stable uniform solu- Bloch ising
tions =+ 1+ yu,, whereu;=(1,0, .. .,0), andunstable 05 1
uniform solutions=0, =+ /1—yu, , whereu, is a unit
vector perpendicular ta,. For negativey (— 1< y<0), the
u, direction becomes unstable, and directions, which rep-
resent any direction perpendicular to the direction, are 00,0 o1 0.2 03 0.4
stable. For the regiofty|>1 one can treat the system as a
one-component system fop>1 and a 6—1)-component ¥

Sysl\tlemt fory<— 1d h i ilibri luti | FIG. 1. The relation between anisotropyand free energy per
ext we consider the nonunitorm equilibrium Solution. In o y5main wall in the one-dimensional system. The solid line

&.1 two-component SySt?m’ ,tWO types of domain wall SOIU'denotes the free energy for the Bloch wall and the dashed line
“9“3’ the Bloch a”?' IsingNeel) walls, are known. Fo_r the denotes the one for the Ising wall. In the regior §<<1/3 (1/3
Ising wall the amplitude of the order parameter vanishes al ) the Bloch(Ising) wall is more stable than the other.
the wall, while for the Bloch wall, it has a nonvanishing
structure, the so-called chiralifyl]. . o —y(>0), Uy— Uy, U, — Uy, (Ug- U,=0) in Egs.(2.3 and

For a positivey we find the same types of solutions as the(2 4). However, for the system with=3 one must take into

Bloch wall and the Ising wall even in the&-component sys- . : . . .
) 2 . account the spatial dimensionality. Namely, in the case
tem. In the one-dimensional space they are respectively rep- ; )
<0 the order parameter space has isotropie {) compo-

resented as nents and another additive onedrdimensional space. Thus

= 1+ vtan 1+ ) /2x]uy, 23 whenn—1=<d (y<0) there exists a solution having a defect
Y= L (L y)/2x]uy @23 structure.(In the On) model there exists defect solution
Y, = Xgtanh(x/&g)u; + Ygsechix/&g)u, , (2.4 ~ whenns<d [8]) However, from the analogy of Ising and

Bloch wall solutions one expects two types of solutions, one
whereXg=\1+7, Yg=1—3y, andéz=1/\/2y. Here the  which has vanishing order parameter at the defect core or
direction ofu, andu, in the order parameter space has noanother which has nonvanishing amplitude at the core, re-
reference to the space coordinate systenaxis). spectively, for strong and weak anisotropic cases.

In order to see the relative stability of two wall solutions ~ For an example, one can imagine the two types of solu-
we show the free energy per one wall in one-dimensionalize@ions in a two-dimensional three-component system as fol-
space. Substituting solutiori®.3) and (2.4) into Eq. (2.1)  lows:
and carrying out the integration, we obtain corresponding
free energies for Ising and Bloch walls as follows: W= 1+|ylp [V(1+]y]2r]U,, 2.7

Ws-=Xepa(r/ép)U, +qYepp(r/égu;. (2.9

HereU, is a vector having rotational symmetry without the
32, dependence on the radius and p; g and pg are certain
37 +7(1‘37)} V2y. (29 functions_satisfyingp; (0)=ps(0)=0, pa(0)%0, p; a()

=1, and pg(«)=0, andq takes either+1 and —1. We
Here const has the same value for bbtfyy) andfg(y) and  have not yet obtained the explicit expression of these func-
it does not effect the stability of the solutions. Figure 1 rep-tions. Hence we cannot say anything whether the transition
resents the behavior of the two free energies. The stable wadlccurs af y| = 1/3 or not.
is obtained from the lowest free energy. Therefore the Ising |n the next section we derive the evolution equation for
wall and the Bloch wall are realized in the regigir1/3 and  the interface focusing on the regime<g/< 1/3.
0<y<1/3, respectively, and give rise to transition continu-

f,(y)=const- ?(H v)32, (2.5

fg(y)=const-

ously to each other ag=1/3 asy is changed. IIl. THE INTERFACE DYNAMICS
For negativey the type of equilibrium solution is affected
by the space dimensiah and the number of componems Interface dynamics for conserved and nonconserved one-

In the two-component system the solutions corresponding toomponent order parameter system have been developed by
the Ising and the Bloch wall again exist for all dimensionali- Lifshitz [9], Allen and Cahn10], and Kawasaki and Ohta
ties. Namely, solutions are obtained by the replacement [2]. In our previous study we investigated the dynamics of
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¢ Substituting Eq(3.2) into Eq. (2.2), after a straightforward
calculation we obtain

o= Ea(X5— Y| 2 — 29,/ &) tank L/ &) + VL, .

ap=(1—y—Y3|$|°>— 9,/ &) p+ Ve
—2tani({/€g)I €V (- V ¢b. (3.4

These equations are not closed since we have not yet shown
how g, depends on such quantities gsor the curvature.
Thus we must determine an equation fpr. Differentiating

both sides of Eq(3.3) and operating the inner product with

to both sides, we obtain

Ia = (X5 Y3 #|2—29,1£5) Vg sech({lép)
+(n-V2n)\g+ V2\g,+ égtani( ¢/ £5)
Xn-V(X5—Y§l o|>—29,/£5). (3.5

!
1

FIG. 2. A schematic figure of coordinate system parametrized . . . .
on the interface. The solid and dashed lines respectively denote tHQ the following we use an approximation that quantigs

interface defined by'=0 and its width. The coordinate system @nd ¢, which move together with interface, change quasis-
consists of the axis along the direction which is perpendicular to  tatically over space and time in the reference system to the
the interface and which lies on the interface. Furthermore, the interface. Sincey, is regarded as a slowly varying quantity
figure schematically represents the meanings of the two characteid comparison with’ near the interface, we can average Eq.
istic length constants denoted By and &,. &5 and &, are respec-  (3.5) to extract the slowly varying quantity. Integrating Eq.
tively the length scales perpendicular to the interfacedrand (3.5 with ¢ after multiplying by seck(¢/&g) with the as-
spatial variation within the interface fap. sumption that variablegh and n are slowly varying on the
interface, the above equation simplifies to

the interface for the anisotropiXY-spin system. As men-
tioned in the previous section an interface is formed in all J\g,~C~Y(X3—Y3|#|?>—29,/£3) o+ (n-V2n)\g,
spatial dimensions when the positive uniaxial anisotropy is )
induced in then-vector model. In this paper we show that the +Vva,, 3.6
dynamics of the interface for the anisotropiesector model
can be obtained from a straightforward extension of our pre
vious work.

Let us define the interface as the surface satisfyirtg
=0 and introduce the curvilinear coordinate systehaj. {

represents a coordinate generated by the tangential directi X > ) o )
to the vector fieldh, which is the unit normal vector to the 9/€cting time and higher space derivativegyfby applying

surface, anda=(a,,a,,...,a4_,) represents the coordinate the quasistatic approximatiog, is adiabatically determined
system within the surface. This is schematically illustrated ir®S
Fig. 2. By introducing the metrig,=V {-V{, the{ axis and

the unit normal vecton are related via

where C is a numerical factor,C™ 1= [secl(y)dy/
[sech(y)dy=2/3.

The dynamics of the interface is described by a set of
equations Egs(3.3), (3.4), and (3.6). Especially Eq.(3.6)
&escribes the time development of the width of wall. Ne-

29,/ E5~X5— Y| #|>+C(n-V?n), (3.7

) by ignoring terms higher than the second derivativen of
gZJ' @n-dr, (3.1) And then _successwely using the quasistatic assumption
(a) for Eq. (3.3, i.e., the order parameter profile is slowly vary-
ing in the reference frame, ag,{+v-V{=0 with v
wherer(a) represents a point on the surface. By introducing=V(r,t) being the velocity of the frame, we obtain
g, one can take into account fluctuations produced my (

—1) degrees of freedom for the order parameter on the sur- 1

face. Vp=— \/—_v Jgn. (3.9
The order parameter profil¢g can be well parametrized 9

by introducing the second order parametgr= ¢(r,t) Furthermore, by using Ed3.7), Eq. (3.4) is reduced to

=(0,¢1,...,¢,_1) with (n—1) components, whose symme-
try is O(n—1), as YZB C
ap= (1=|d?) = 5 (n-V2N) + V2
(r,t) =Xgtanh ¢/ Ep)us + Ygsech ¢/ &g) (1 t).

(3.2 —2tani{{/ég)/ EgV (- V . (3.9
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This equation becomes more convenient as we express it bypsence of the fluctuation ap, or one obtains the usual
the (¢,a)-coordinate system time-dependent Ginzburg-Landau equation §®in the flat
interfaceK =0, so both minimize the free energy.

V2=(V-\g,n)d,+9.92+ V2. (3.10
Rewriting Eq.(3.4) by using the {,a)-coordinate system, IV. DISCUSSION
we obtain Let us discuss the implications of the results in detail. We
d V2 c are mainly interested in the effect of dynamical coupling
B between the interface and the fluctuation of the order param-
—¢=—(1—|P|>)p— = (n-V2n) o+ V2p+g,0> P
dtd’ 2 1-l4P¢ 2( NPt Vadta b eter ¢p. However, the motion of the interface and the evolu-

tion of ¢ are almost separable, indeed the coupling is negli-
—2tanh{/¢g)/ €0, b, (3.13 gible for the interface having an almost flat curve and an
ordered¢ from Egs.(3.195 and(3.17). The coupling may be

ence frame, @/dt) ¢=d,— (V - Jg.n)d,¢. In the noncon considerable at critical regions. Hence we consider two lim-
y — Ot . Ie [P - . . . . s - > .
served system it is reasonable to ignore the interaction€d situations(i) £o> £, (i) §9<£p, by noting that the

among globally separated interfaces, because they decay e?fSteg] thas t\évt?] Iefngtr: constgnts, dtge t\’r\:'dth dOf the mter{ace
ponentially in the distance along tifedirection. We assume 5B and the width of walk, produced by the order parameter

; . ; Fig. 2.

that the{ dependence to thé is very small and it results in b ( . . .

the curvature of the interface. Thus the final reduction of Eq.m a?e]:))fr?ngﬁgcfse;mgréguﬁ?se git;gtveEéu%eféang t%lvae r‘;:_um'
(3.11) is achieved by ignoring thé dependence o in the " y 2162) (1— | bl2) + (C/2 T K2—0 f' th ions| ¢

last terms, i.e., d;¢~0, &?q[wO). This reduction incorpo- lon (2/€) ( blo) + (C/2)Tn or the regionsj ¢

rates the curvature effect by the order of the second deriva?rl%'ngéoogt;iiignormg the explicit time dependence @i

tive of n, and corrections to it are obtained perturbatively.

where we introduced the time derivatides/dt on the refer-

This approximation is verified when we discuss a sufficiently ce?
smooth interface. , |1+ 291k2 for ||~ dbol,
By summarizing above results, the set of evolution equa- | pl°~ 4 (4.1
tions for the interface is written as 0 for defects.
V,=—V-n—n-Vin( \/g—g), (3.12  Then, by applying Eq4.1) to Eq.(3.17), g, is calculated as
=TrK—n-VIn(+g,), (3.13 1-CE&ETIK? for | ep|~| ebl,
d Y2 c 9~ 2_5@( g 2) N
Gb= 2B -5 (n-Vi) + Vi gl tmg ) forl4lmo
(3.14 (4.2
5 c for each place on the interface.
=—(1-|p|?) o+ STIK? P+ Vi, (3.15 Case (i) Consider the situation slightly below=1/3,
0 2 that is, the transition point of the wall structure. In this case
sinceg, has less dependence gnfrom Eq.(4.2), the veloc-
£3Y3 , 5, ity of the interface also almost independents ¢pnand re-
9,~1+— (1-[|H+ — n-van, (318  sults inv,~TrK, which is the familiar form for a noncon-
served one-component system, by neglecting the higher
282 ce2 order curvature corrections. On the other hand, &ql)
=1+ _B(l_|¢|2)_ 2Bk (3.17)  shows the divergence of the amplitude ¢pfas £, becomes
& 2 infinity. However, such a divergence has no significant

meaning. Instead, utilizing the original order paramé¢Be?)
Here we introduced the length constard,=2/Yg  rather tharng, we obtain the order parameter profile
=2(1-3v) 2 which represents a length scale within the
interface and estimates the scale of defect ¢see Fig. 2 Y~ X[ ¢1Eg]uy+ Y5+ CTrK?sechif/ ég)u, . (4.3
For the alternative expression in the second line of each
equation we have used the relation&/ -n=TrK [11] and  This result implies that the interface fluctuation leads to the
n-V2n=—Vn.Vn=—TrK? with the curvature tensdf,;  suppression of the transition from the Bloch wall to the Ising
=Kg,=—1t,-(dn/dag)=—1t4-(dnlda,), wheret, is the wall, since even under the transition point there remains the
unit vector directed along the coordinag [12]. Here the amplitude of the Bloch wall, which is represented by
TrK, which we simply call curvature below, is equivalent to YCTrK?u, in comparison with the one-dimensional solution
the mean curvature multiplied byl ¢ 1). (2.4).

The above equations describe the reduced dynamics of the Case (ii) When vy is slightly below zero, the case is di-
interface coupled with the dynamics of the additional ordervided into two cases according to the interrelation between
parameterp. The results are reasonable because they reveéiie space dimensionality and the number of components. For
the Allen-Cahn result for the evolution of the interface in then>d (d#1), |¢|>~1 within almost all of the interfaces
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since there are no stable defects. From BR) hence one because in such dynamics the times in which the system is in
again finds the relation,~TrK by assuming the condition criticality decreases as the system proceeds to an ordered
|E€gTrK|<1 for sufficiently smooth interfaces. On the state.

contrary, in the case where<In<d, there exist stable In the future our effort will be devoted to account for
defects, whose core size is approximatély. One may effects which were omitted in the present study, such as the
expect a slight correction to the velocity of the interfaceexternal noise, the anisotropy of the elasticity, and others.
since the defect alters the width of the wall, which is inter-

preted as anasslikequantity. The second line of E4.2) is ACKNOWLEDGMENTS
written in 9~ 1+ (2&3/&5) [1— (CE£5/4) TIK?]~ _ ) _
(2§§/§S)[1— (053/4)-” K2] for ¢~0 (defects. Substitut- The author is grateful to H. Fujisaka for valuable discus-

sions and a critical reading of the manuscript. He also thanks

ing both form ofg, into Eq. (3.13), with the assumption - . X
nd 9 | g (3:13, wi Hmpt H. Furukawa for a critical reading and helpful suggestions.

|£€gTrK| <1, we obtain

Trk + C&TrK3 for ¢~ ¢y, APPENDIX

Vn (4.4 Since the curvature tenséf;; is defined in the second
fundamental form in terms of differential geomefty?], the

_ formulan- VTrK?=2TrK? can be derived by considering a

for both part of the interface, where we have used the relacouple of second fundamental forms for two surfaces slightly

tion n- VTrk?=2TrK® (see the Appendjx For the regime different along the normal direction to one surface.

|€aTrK|~1 the above expansion is not valid, and the inter- e define a point on a surface B&) and another point

defect picture. differed byh along the normal direction to the first surface.

Equation(4.4) shows thel¢| dependence of the veloCity Here we use the orthogonal coordinate system
of the interface. However, its effect is second order and does- 3,  a,,...) within the surface for simplicity.

not cause any instability of the interface. From these consid- The second fundamental form is defined by
erations we again find the familiar result for the average

St for ¢~0
TrK + 2 £TrK or ¢

growth law of the characteristic length scalel ast'’?. on  or
Il=—dn-dr, :_iEj a—ala—ajdaidaj,
V. SUMMARY
2
We obtained the interface equation for thevector sys- =>n- Ldaidaj . =D Kijdada;, (A1)
tem having positive uniaxial anisotropy in the purely dissi- T 0809, ]

pative and nonconserved situations by ignoring the external

thermal fluctuation. Our attention is mainly focused on theusing the differential form. Applying this formula to the sur-
behavior of the interface velocity and its dependence on thé&cer’(a), one obtains

inner degrees of freedom. In the isotropic space the main

contribution to the interface velocity is the force due to the II"=—dn-dr—hdn-dn,

surface energy, which controls the global dynamics even for

th|S SyStem' :2 K'] - hE KikKkj da,da] y (AZ)
In the preceding section we discussed the interface dy- i 3

namics in the nearly critical case in the mean field level. We

showed that the width of the interface depends on the state & that point. Thus we obtain the curvature ten&gr=Kj;

the additive order parameter, and that the interface velocity- h2¢KicKy; at the pointr’(a). Therefore we obtain the
also depends on it, with the second order correction of theelation |n- VTrK|=|TrK? except the sign in the limih
curvature, through the dependence for the width of the inter—0 from the definition of the derivative. The standard defi-
face. Although this predicts the shape dynamics of the internition of the sign of curvature is taken as it increases along
face connected to the additive order parameter, it is difficulthe direction of the normal vector. Hence we obtain the
to observe such dynamics over long times, especially in théormula n-VTrK=TrK?, and furthermore n-VTrK?
purely dissipative dynamics without external noise. This is=2TrK?3,
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