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Interface dynamics in a uniaxial anisotropic n-vector model

Hiroki Tutu
Department of Physics, Kyushu University 33, Fukuoka 812-81, Japan

~Received 24 September 1997!

We investigate interface dynamics of a nonconservedn-vector model with a positive uniaxial anisotropy and
derive its evolution equation. The positive uniaxial anisotropy makes the symmetry of the order parameter
lower, and the medium forms an interface structure. In a weak anisotropic case the interface has an additive
order parameter having (n21) degrees of freedom with O(n21) symmetry. The evolution equation is incor-
porated with the fluctuation associated with additive (n21) degrees of freedom on the interface, and the
resultant form has the extended form of the one derived by Allen and Cahn for the scalar order parameter
system.@S1063-651X~98!08003-9#

PACS number~s!: 05.70.Ln, 64.60.Cn, 75.60.Ch, 75.30.Gw
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I. INTRODUCTION

The dynamics in which the interface plays an importa
role has had much attention in the context of magnetic s
tems@1#, binary mixtures@2#, reaction-diffusion systems, an
liquid crystal systems@3#. Some familiar examples are wha
appear in ordering process in a ferromagnet or binary m
tures. In such systems the order parameter is a scalar
variable and the free energy has two local minima, which
produced by temperature change.

The interface formed in a scalar order parameter sys
has no particular structure except curvature describing
local geometry when the embedded space is isotropic
homogeneous. Furthermore the dynamics minimizes its
face energy which is driven by curvature in the orderi
process in purely dissipative cases. In an extension of th
systems we consider a situation where the interface ha
additive vector order parameter with O(n21) symmetry, in
addition to curvature. One such system is realized in
n-vector model with the positive uniaxial anisotropy axis
the order parameter space.

The n-vector model describes a medium whose order
rameter has O(n) symmetry. In this model the rotation in th
physical space and the rotation in the inner space of o
parameter are independent@4#. The model describes th
XY-spin system forn52 and a Heisenberg spin system f
n53, for example. The nonequilibrium dynamical study
this model was developed by several authors in the fram
the ordering process@5#.

The introduction of uniaxial anisotropy to then-vector
model reduces the symmetry of the order parameter
O(n21), O(n21)3Z2, and Z2 symmetry, which, respec
tively, correspond to the strong negative anisotropy,~positive
or negative! weak anisotropy, and strong positive anisotrop
The sign is defined in the next section. Due to the symme
property, if positive anisotropy is induced, the system p
sesses interfaces which separates two stable states.
cially if the anisotropy is weak, the interface has additi
(n21) degrees of freedom whose symmetry is O(n21).
The interest is in how to describe the local dynamics wh
is responsible for evolutions of interfaces.

In previous works we studied both one- and tw
dimensional anisotropicXY-spin systems (n52) in noncon-
571063-651X/98/57~3!/2675~6!/$15.00
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served systems@6,7#. In both works we derived the evolutio
equation for the domain wall, the so-called Bloch wall, ha
ing chirality. In one dimension, we showed that the chiral
brings about either a repulsive or attractive interaction
tween neighboring walls in contrast to the Ising walls whi
always bring an attractive interaction. In two dimensions,
chirality does not affect the global features of the dynami
such as the growth law for the average domain size, and o
slightly affects the interface shape.

The fundamental purpose of the present paper is to s
the derivation of the evolution equation of the interface
then-vector model with positive uniaxial anisotropy. This
a straight extension of our previous work for the tw
dimensional anisotropicXY-spin system. Results can be ge
eralized to any space dimensions and number of compone

This paper is organized as follows. In Sec. II the mode
presented. In Sec. III we obtain the fundamental equati
controlling the interface dynamics for this system, and th
discuss their features in Sec. IV. Finally we summarize
results in Sec. V.

II. THE MODEL

Let us consider the Ginzburg-Landau~GL! type free en-
ergy for the n-vector system with anisotropy in
d-dimensional space,

H$c%5E ddr H V~ ucu!2
1

2(a,b
cagabcb

1
1

2(j ,a ] jc
a] jc

aJ , ~2.1!

where c is the n-component vector order parameterc
5(c1,c2,...,cn), gab is a symmetric tensor which repre
sents the anisotropy, andV(x)5(12x2)2/4. Since we con-
sider uniaxial anisotropy,gab is chosen in such a way tha
the first component of the order parameter is the princi
axis without loss of generality, i.e.,g115g, gaa52g (a
Þ1), gab50 (aÞb). This is the simplest model for the
n-vector model with uniaxial anisotropy considering on
isotropic elastic energy.
2675 © 1998 The American Physical Society
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For the time evolution we consider the nonconserv
purely dissipative dynamics

] tc
a52

dH

dca
5~12ucu2!ca1gaaca1¹2ca. ~2.2!

Here we ignore thermal noise and concern ourselves with
system which is quenched from above the critical tempe
ture.

Let us first investigate the uniform solution of Eq.~2.2!.
For positiveg (0,g,1), there exist stable uniform solu
tions c56A11gu1, whereu15(1,0, . . .,0), andunstable
uniform solutionsc50, c56A12gu' , whereu' is a unit
vector perpendicular tou1. For negativeg (21,g,0), the
u1 direction becomes unstable, andu' directions, which rep-
resent any direction perpendicular to theu1 direction, are
stable. For the regionugu.1 one can treat the system as
one-component system forg.1 and a (n21)-component
system forg,21.

Next we consider the nonuniform equilibrium solution.
a two-component system, two types of domain wall so
tions, the Bloch and Ising~Néel! walls, are known. For the
Ising wall the amplitude of the order parameter vanishes
the wall, while for the Bloch wall, it has a nonvanishin
structure, the so-called chirality@1#.

For a positiveg we find the same types of solutions as t
Bloch wall and the Ising wall even in then-component sys-
tem. In the one-dimensional space they are respectively
resented as

cI 15A11gtanh@A~11g!/2x#u1 , ~2.3!

cB15XBtanh~x/jB!u11YBsech~x/jB!u' , ~2.4!

whereXB5A11g, YB5A123g, andjB51/A2g. Here the
direction of u1 and u' in the order parameter space has
reference to the space coordinate system (x axis!.

In order to see the relative stability of two wall solution
we show the free energy per one wall in one-dimensionali
space. Substituting solutions~2.3! and ~2.4! into Eq. ~2.1!
and carrying out the integration, we obtain correspond
free energies for Ising and Bloch walls as follows:

f I~g!5const1
2A2

3
~11g!3/2, ~2.5!

f B~g!5const1F32

3
g21g~123g!G Y A2g. ~2.6!

Here const has the same value for bothf I(g) and f B(g) and
it does not effect the stability of the solutions. Figure 1 re
resents the behavior of the two free energies. The stable
is obtained from the lowest free energy. Therefore the Is
wall and the Bloch wall are realized in the regiong.1/3 and
0,g,1/3, respectively, and give rise to transition contin
ously to each other atg51/3 asg is changed.

For negativeg the type of equilibrium solution is affecte
by the space dimensiond and the number of componentsn.
In the two-component system the solutions correspondin
the Ising and the Bloch wall again exist for all dimensiona
ties. Namely, solutions are obtained by the replacemeng
d

e
-

-

at

p-

d

g

-
all
g

-

to

→2g(.0), u1→u2, u'→u1, (u1•u250) in Eqs.~2.3! and
~2.4!. However, for the system withn>3 one must take into
account the spatial dimensionality. Namely, in the caseg
,0 the order parameter space has isotropic (n21) compo-
nents and another additive one ind-dimensional space. Thu
whenn21<d (g,0) there exists a solution having a defe
structure.„In the O(n) model there exists defect solutio
when n<d @8#.… However, from the analogy of Ising an
Bloch wall solutions one expects two types of solutions, o
which has vanishing order parameter at the defect core
another which has nonvanishing amplitude at the core,
spectively, for strong and weak anisotropic cases.

For an example, one can imagine the two types of so
tions in a two-dimensional three-component system as
lows:

cI 25A11ugur I@A~11ugu!/2r #U' , ~2.7!

cB25XBrB~r /jB!U'1qYB r̄ B~r /jB!u1 . ~2.8!

HereU' is a vector having rotational symmetry without th
dependence on the radiusr , and r I ,B and r̄ B are certain
functions satisfyingr I(0)5rB(0)50, r̄ B(0)Þ0, r I ,B(`)
51, and r̄ B(`)50, andq takes either11 and 21. We
have not yet obtained the explicit expression of these fu
tions. Hence we cannot say anything whether the transi
occurs atugu51/3 or not.

In the next section we derive the evolution equation
the interface focusing on the regime 0,g,1/3.

III. THE INTERFACE DYNAMICS

Interface dynamics for conserved and nonconserved o
component order parameter system have been develope
Lifshitz @9#, Allen and Cahn@10#, and Kawasaki and Ohta
@2#. In our previous study we investigated the dynamics

FIG. 1. The relation between anisotropyg and free energyf per
one domain wall in the one-dimensional system. The solid l
denotes the free energy for the Bloch wall and the dashed
denotes the one for the Ising wall. In the region 0,g,1/3 (1/3
,g) the Bloch~Ising! wall is more stable than the other.
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57 2677INTERFACE DYNAMICS IN A UNIAXIA L . . .
the interface for the anisotropicXY-spin system. As men
tioned in the previous section an interface is formed in
spatial dimensions when the positive uniaxial anisotropy
induced in then-vector model. In this paper we show that th
dynamics of the interface for the anisotropicn-vector model
can be obtained from a straightforward extension of our p
vious work.

Let us define the interface as the surface satisfyingc1

50 and introduce the curvilinear coordinate system (z,a). z
represents a coordinate generated by the tangential dire
to the vector fieldn, which is the unit normal vector to th
surface, anda[(a1 ,a2 ,...,ad21) represents the coordinat
system within the surface. This is schematically illustrated
Fig. 2. By introducing the metricgz5“z•“z, thez axis and
the unit normal vectorn are related via

z5E
r ~a!

r
Agzn•dr , ~3.1!

wherer (a) represents a point on the surface. By introduc
gz , one can take into account fluctuations produced byn
21) degrees of freedom for the order parameter on the
face.

The order parameter profilec can be well parametrized
by introducing the second order parameterf[f(r ,t)
[(0,f1 ,...,fn21) with (n21) components, whose symme
try is O(n21), as

c~r ,t !5XBtanh~z/jB!u11YBsech~z/jB!f~r ,t !.
~3.2!

FIG. 2. A schematic figure of coordinate system parametri
on the interface. The solid and dashed lines respectively denot
interface defined byc150 and its width. The coordinate syste
consists of thez axis along then direction which is perpendicular to
the interface anda which lies on the interface. Furthermore, th
figure schematically represents the meanings of the two chara
istic length constants denoted byjB andj0. jB andj0 are respec-
tively the length scales perpendicular to the interface forc1 and
spatial variation within the interface forf.
ll
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Substituting Eq.~3.2! into Eq. ~2.2!, after a straightforward
calculation we obtain

] tz5jB~XB
22YB

2 ufu222gz /jB
2 !tanh~z/jB!1“

2z,
~3.3!

] tf5~12g2YB
2 ufu22gz /jB

2 !f1“

2f

22tanh~z/jB!/jB“z•“f. ~3.4!

These equations are not closed since we have not yet sh
how gz depends on such quantities asf or the curvature.
Thus we must determine an equation forgz . Differentiating
both sides of Eq.~3.3! and operating the inner product withn
to both sides, we obtain

] tAgz5~XB
22YB

2 ufu222gz /jB
2 !Agzsech2~z/jB!

1~n•“

2n!Agz1“

2Agz1jBtanh~z/jB!

3n•“~XB
22YB

2 ufu222gz /jB
2 !. ~3.5!

In the following we use an approximation that quantitiesgz

and f, which move together with interface, change quas
tatically over space and time in the reference system to
interface. Sincegz is regarded as a slowly varying quanti
in comparison withz near the interface, we can average E
~3.5! to extract the slowly varying quantity. Integrating E
~3.5! with z after multiplying by sech2(z/jB) with the as-
sumption that variablesf and n are slowly varying on the
interface, the above equation simplifies to

] tAgz'C21~XB
22YB

2 ufu222gz /jB
2 !Agz1~n•“

2n!Agz

1“

2Agz, ~3.6!

where C is a numerical factor, C215*sech4(y)dy/
*sech2(y)dy52/3.

The dynamics of the interface is described by a set
equations Eqs.~3.3!, ~3.4!, and ~3.6!. Especially Eq.~3.6!
describes the time development of the width of wall. N
glecting time and higher space derivative ofgz by applying
the quasistatic approximation,gz is adiabatically determined
as

2gz /jB
2'XB

22YB
2 ufu21C~n•“

2n!, ~3.7!

by ignoring terms higher than the second derivative ofn.
And then successively using the quasistatic assump

for Eq. ~3.3!, i.e., the order parameter profile is slowly var
ing in the reference frame, as] tz1v•“z50 with v
[v(r ,t) being the velocity of the frame, we obtain

vn'2
1

Agz

“•Agzn. ~3.8!

Furthermore, by using Eq.~3.7!, Eq. ~3.4! is reduced to

] tf5
YB

2

2
~12ufu2!f2

C

2
~n•“

2n!f1¹2f

22tanh~z/jB!/jB“z•“f. ~3.9!
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2678 57HIROKI TUTU
This equation becomes more convenient as we express
the (z,a)-coordinate system

“

2[~“•Agzn!]z1gz]z
21“a

2 . ~3.10!

Rewriting Eq. ~3.4! by using the (z,a)-coordinate system
we obtain

d

dt
f5

YB
2

2
~12ufu2!f2

C

2
~n•“a

2n!f1“a
2f1gz]z

2f

22tanh~z/jB!/jB]zf, ~3.11!

where we introduced the time derivativedf/dt on the refer-
ence frame, (d/dt) f5] tf2(“•Agzn)]zf. In the noncon-
served system it is reasonable to ignore the interact
among globally separated interfaces, because they deca
ponentially in the distance along thez direction. We assume
that thez dependence to thef is very small and it results in
the curvature of the interface. Thus the final reduction of
~3.11! is achieved by ignoring thez dependence off in the
last terms, i.e., (]zf'0, ]z

2f'0). This reduction incorpo-
rates the curvature effect by the order of the second der
tive of n, and corrections to it are obtained perturbative
This approximation is verified when we discuss a sufficien
smooth interface.

By summarizing above results, the set of evolution eq
tions for the interface is written as

vn52“•n2n•“ ln~Agz!, ~3.12!

5TrK2n•“ ln~Agz!, ~3.13!

d

dt
f5

YB
2

2
~12ufu2!f2

C

2
~n•“a

2n!f1“a
2f,

~3.14!

5
2

j0
2 ~12ufu2!f1

C

2
TrK2f1“a

2f, ~3.15!

gz511
jB

2YB
2

2
~12ufu2!1

CjB
2

2
n•“a

2n, ~3.16!

511
2jB

2

j0
2 ~12ufu2!2

CjB
2

2
TrK2. ~3.17!

Here we introduced the length constantj052/YB
52(123g)21/2, which represents a length scale within t
interface and estimates the scale of defect core~see Fig. 2!.
For the alternative expression in the second line of e
equation we have used the relations2“•n5TrK @11# and
n•“

2n52“n•“n52TrK2 with the curvature tensorKab
5Kba52ta•(]n/]ab)52tb•(]n/]aa), where ta is the
unit vector directed along the coordinateaa @12#. Here the
TrK, which we simply call curvature below, is equivalent
the mean curvature multiplied by (d21).

The above equations describe the reduced dynamics o
interface coupled with the dynamics of the additional ord
parameterf. The results are reasonable because they re
the Allen-Cahn result for the evolution of the interface in t
by
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absence of the fluctuation off, or one obtains the usua
time-dependent Ginzburg-Landau equation forf in the flat
interfaceK50, so both minimize the free energy.

IV. DISCUSSION

Let us discuss the implications of the results in detail. W
are mainly interested in the effect of dynamical coupli
between the interface and the fluctuation of the order par
eterf. However, the motion of the interface and the evo
tion of f are almost separable, indeed the coupling is ne
gible for the interface having an almost flat curve and
orderedf from Eqs.~3.15! and~3.17!. The coupling may be
considerable at critical regions. Hence we consider two l
ited situations~i! j0@jB , ~ii ! j0!jB , by noting that the
system has two length constants, the width of the interf
jB and the width of wallj0 produced by the order paramet
f ~Fig. 2!.

Before proceeding to the above subject we give a su
mary of more useful results. First Eq.~3.15! leads to a rela-
tion (2/j0

2) (12ufu0
2)1 (C/2)TrK2;0 for the regionsufu

'uf0u (Þ0), ignoring the explicit time dependence off.
Thus we obtain

ufu2;H 11
Cj0

2

4
TrK2 for ufu;uf0u,

0 for defects.

~4.1!

Then, by applying Eq.~4.1! to Eq.~3.17!, gz is calculated as

gz;H 12CjB
2TrK2 for ufu;uf0u,

11
2jB

2

j0
2 S 12

Cj0
2

4
TrK2D for ufu;0

~4.2!

for each place on the interface.
Case (i). Consider the situation slightly belowg51/3,

that is, the transition point of the wall structure. In this ca
sincegz has less dependence onf from Eq.~4.2!, the veloc-
ity of the interface also almost independents onf, and re-
sults in vn;TrK, which is the familiar form for a noncon
served one-component system, by neglecting the hig
order curvature corrections. On the other hand, Eq.~4.1!
shows the divergence of the amplitude off as j0 becomes
infinity. However, such a divergence has no significa
meaning. Instead, utilizing the original order parameter~3.2!
rather thanf, we obtain the order parameter profile

c;X@z/jB#u11AY0
21CTrK2sech~z/jB!u' . ~4.3!

This result implies that the interface fluctuation leads to
suppression of the transition from the Bloch wall to the Isi
wall, since even under the transition point there remains
amplitude of the Bloch wall, which is represented b
ACTrK2u' in comparison with the one-dimensional solutio
~2.4!.

Case (ii). Wheng is slightly below zero, the case is d
vided into two cases according to the interrelation betwe
the space dimensionality and the number of components.
n.d (dÞ1), ufu2;1 within almost all of the interfaces
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57 2679INTERFACE DYNAMICS IN A UNIAXIA L . . .
since there are no stable defects. From Eq.~4.2! hence one
again finds the relationvn;TrK by assuming the condition
ujBTrKu!1 for sufficiently smooth interfaces. On th
contrary, in the case where 1,n<d, there exist stable
defects, whose core size is approximatelyj0. One may
expect a slight correction to the velocity of the interfa
since the defect alters the width of the wall, which is inte
preted as amasslikequantity. The second line of Eq.~4.2! is
written in gz;11 (2jB

2/j0
2) @12 (Cj0

2/4)TrK2#;
(2jB

2/j0
2)@12 (Cj0

2/4)Tr K2# for f;0 ~defects!. Substitut-
ing both form of gz into Eq. ~3.13!, with the assumption
ujBTrKu!1, we obtain

vn;H TrK1CjB
2TrK3 for f;f0,

TrK1
C

4
j0

2TrK3 for f;0
~4.4!

for both part of the interface, where we have used the r
tion n•“TrK252TrK3 ~see the Appendix!. For the regime
ujBTrKu;1 the above expansion is not valid, and the int
face picture loses its validity and instead one must use
defect picture.

Equation~4.4! shows theufu dependence of the velocit
of the interface. However, its effect is second order and d
not cause any instability of the interface. From these con
erations we again find the familiar result for the avera
growth law of the characteristic length scale asl;t1/2.

V. SUMMARY

We obtained the interface equation for then-vector sys-
tem having positive uniaxial anisotropy in the purely dis
pative and nonconserved situations by ignoring the exte
thermal fluctuation. Our attention is mainly focused on t
behavior of the interface velocity and its dependence on
inner degrees of freedom. In the isotropic space the m
contribution to the interface velocity is the force due to t
surface energy, which controls the global dynamics even
this system.

In the preceding section we discussed the interface
namics in the nearly critical case in the mean field level. W
showed that the width of the interface depends on the sta
the additive order parameter, and that the interface velo
also depends on it, with the second order correction of
curvature, through the dependence for the width of the in
face. Although this predicts the shape dynamics of the in
face connected to the additive order parameter, it is diffic
to observe such dynamics over long times, especially in
purely dissipative dynamics without external noise. This
ke
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because in such dynamics the times in which the system
criticality decreases as the system proceeds to an ord
state.

In the future our effort will be devoted to account fo
effects which were omitted in the present study, such as
external noise, the anisotropy of the elasticity, and other
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APPENDIX

Since the curvature tensorKi j is defined in the second
fundamental form in terms of differential geometry@12#, the
formula n•“TrK252TrK3 can be derived by considering
couple of second fundamental forms for two surfaces sligh
different along the normal direction to one surface.

We define a point on a surface asr (a) and another point
r 8(a)5r (a)1hn, which represents a point on the surfa
differed byh along the normal directionn to the first surface.
Here we use the orthogonal coordinate systema
[(a1 ,a2 ,...) within the surface for simplicity.

The second fundamental form is defined by

II[2dn•dr , 52(
i j

]n

]ai
•

]r

]aj
daidaj ,

5(
i j

n•

]2r

]ai]aj
daidaj , [(

i j
Ki j daidaj , ~A1!

using the differential form. Applying this formula to the su
face r 8(a), one obtains

II 852dn•dr2hdn•dn,

5(
i j

FKi j 2h(
k

KikKk jGdaidaj , ~A2!

for that point. Thus we obtain the curvature tensorKi j8 5Ki j

2h(kKikKk j at the pointr 8(a). Therefore we obtain the
relation un•“TrKu5uTrK2u except the sign in the limith
→0 from the definition of the derivative. The standard de
nition of the sign of curvature is taken as it increases alo
the direction of the normal vectorn. Hence we obtain the
formula n•“TrK5TrK2, and furthermore n•“TrK2

52TrK3.
n-

.
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